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COMBINATORIAL INTERACTION OF DISTURBANCES

IN A SUPERSONIC BOUNDARY LAYER

UDC 532.526N. M. Terekhova

A nonlinear model of interaction of disturbances in the regime of coupled combinatorial relations
is used to explain the dynamics of unstable waves arising due to introduction of controlled high-
intensity disturbances into a supersonic boundary layer. The model includes effects of self-action and
combinatorial interaction of the waves. The second-order model considered offers a rather accurate
description of the streamwise dynamics of plane waves.

Introduction. The situation arising due to introduction of controlled disturbances of a rather high intensity
into a boundary layer on a flat plate at a Mach number M = 2 [1] is theoretically studied in the present paper.
Kosinov et al. [1] called the downstream evolution of such disturbances “anomalous,” since it differs significantly from
the evolution of small perturbations observed earlier. It was established that quasi-two-dimensional disturbances are
most unstable. The initial spectrum contains two wave packets with multiple frequencies (subharmonic frequency
f1 = 10 kHz and fundamental frequency f2 = 20 kHz), the packet with the frequency f1 dominates, and the greatest
contribution to disturbance intensity is made by the plane wave. The two-dimensional character of the wave spectra
remains unchanged further downstream, which is unusual because the growth rates of three-dimensional waves are
significantly greater than the growth rates of plane waves in accordance with the linear theory. Significant (almost
tenfold) amplification of disturbances with the frequency f1 is observed; the growth rate of disturbances with the
fundamental frequency f2 is somewhat smaller but still much greater than linear. This is the reason for a 20%
decrease in the distance between the leading edge and the point of laminar–turbulent transition. A significant
steady distortion of the mean velocity profile across the boundary layer is registered: the profile becomes more
filled in the near-wall region and less filled in the external region, which increases the boundary-layer thickness.
It was assumed that the experimental results described are caused by the influence of a steady vortex generated
by the source of controlled disturbances. It was also found that the phase velocities of disturbances are 30–40%
greater than linear. Kosinov et al. [1] concluded that the features observed are caused by the nonlinear character
of evolution of disturbances. The reasons for these anomalies were not established.

The objective of the present work is to explain the above-described features by nonlinear interaction of
own travelling Tollmien–Schlichting waves without considering steady vortices, which have not been described
theoretically. The analysis is performed within the framework of the weakly linear stability theory, which is used to
explain the dynamics of disturbances at early stages of nonlinearity. This theory includes two already tested models:
the model of interaction in resonance triads and a higher-order model of coupled combinatorial interactions.

It was shown in the experiments [2, 3] and calculations [4] that subharmonic instability is formed in a
supersonic boundary layer with a moderate level of controlled disturbances. This instability can be described
within the framework of resonance interactions of wave triplets. In this case, three-dimensional modes prevail in
the disturbance spectrum, and filling of the spectrum is a cascade process of identification of three-dimensional
subharmonics in a parametric domain. The effectiveness of resonance interactions in a subsonic boundary layer is
known to decrease with increasing disturbance intensity or amplitude. This feature is also inherent in a supersonic
boundary layer under the test conditions of [1]; however, a detailed discussion of the resonance model is not the
subject of the present paper.
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In the present work, we consider the nonlinear evolution of high-intensity disturbances within the frame-
work of the model of coupled combinatorial interactions of plane two-dimensional waves. The condition of the
combinatorial type of interaction is a rather high value of the wave amplitude. In this case, both the self-action
of the wave and the combinatorial interaction of two or more waves are possible. This nonlinear mechanism may
be either alternative or complementary to the resonance mechanism in the course of energy redistribution in the
amplitude–frequency spectrum of the excited flow. It is also important to study these interactions because they can
occur in the process of identification of the deterministic frequency in evolution of wave packets of different nature,
for instance, travelling and steady vortex disturbances, which can affect the whole process of excitation of waves
whose frequencies may be other than multiple and may not satisfy the conditions of phase synchronism.

The special features of operation of the combinatorial mechanism of interaction of two plane waves are
studied in the present paper within the framework of the weakly nonlinear stability theory. It should be noted
that simulation of nonlinearity in subsonic boundary layer also started from studying the effects of self-action of
finite-intensity waves [5, 6].

We denote the scale of the disturbance field by ε. Then, the mechanism considered can be described as
follows. Self-action of the wave of order ε2 leads to generation of zero secondary harmonics, which distort the mean
flow field, and to induction of overtones with a doubled phase. Summary or difference secondary harmonics can be
formed by combinatorial interaction of two waves. In the third order in terms of ε, interaction of secondary waves
with initial disturbances determines the nonlinear evolution of the amplitudes of primary disturbances.

The evolution described is studied by means of integrating amplitude equations that are based on the known
Landau equation [7, 8]. Thus, the mechanism of coupled interaction O(ε3) has a higher order of nonlinearity as
compared with the resonance mechanism O(ε2). We consider all components of this interaction.

Basic Formulas and Methods of the Solution. The initial postulates of the nonlinear model for
compressible boundary layers are described in detail in [4]. Following Gaponov and Maslennikova [4], we consider
the disturbed fields of velocities u and v, density ρ0, pressure p0, and temperature T0 of a compressible gas

u = U(Y ) + εu′, v = εv′, ρ0 = ρ(Y ) + ε%′,
(1)

p0 = P + εp′, T0 = T (Y ) + εΘ′, p′/P = %′/ρ+ Θ′/T

in a dimensionless coordinate system X = x/δ, Y = y/δ, where δ =
√
µex/(Ueρe) (δ is the boundary-layer thickness

and µ is the dynamic viscosity); the subscript “e” refers to parameters at the external boundary y > δ; the primed
and non-primed quantities are the fluctuating and mean components, respectively, of the corresponding quantities;
the scale parameter is ε� 1. Normalization is performed by flow parameters at the external boundary. We introduce
the Reynolds number based on these parameters: Re =

√
xρeUe/µe. It should be noted that the dimensionless

streamwise coordinate X coincides with the value of Re.
The steady undisturbed profiles of U , ρ, and T are found using the technique of Gaponov and Maslov [9]

for T = 1/ρ.
The solution is constructed by the method of expansion in the small parameter ε and two-scale expansion

of the x coordinate. In addition to the “fast” scale X, we introduce the “slow” scale ξ = εX characterizing the
difference in variation of the disturbance phase and amplitude. The necessity of introducing the “slow” scale is
caused by the large difference in the velocities mentioned (∂/∂x = ∂/∂X + ε∂/∂ξ). We seek the solution for waves
of the following form:

u′j = Aj(ξ)uj(Y ) exp (iθj) +A−j(ξ)u−j(Y ) exp (−iθj), j = 1, 2. (2)

Here u′j is the longitudinal component of velocity, Aj is the amplitude, which varies slowly along the streamwise
coordinate, u(Y ) is the amplitude eigenfunction, the second term is a complex-conjugate quantity, and θ = αX−ωt,
where α = αr + iαi (αr is the wavenumber and αi is the growth rate) and ω = 2πf . The subscripts j = 1 and 2
correspond to disturbances with the subharmonic frequency f1 and fundamental frequency f2, respectively.

We introduce the initial variables, in terms of which we seek the solution, in the form of the vector

zk = |u, uY , v, p,Θ,ΘY |, uY =
du

dY
, ΘY =

dΘ
dY

, k = 1, 2, . . . , 6.
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Substituting (1) and (2) into the full system of equations of motion and conservation for a compressible
gas [9], we obtain the initial system for the disturbances within the framework of the weakly nonlinear theory (the
subscript j is omitted):

Lk(exp (iθ)zk) = F k. (3)

Here

L1(exp (iθ)z1) ≡ [z2 − z1
Y ] exp (iθ) = 0,

L2(exp (iθ)z2) ≡ [ρ((−iω + iαU)z1 + UY z
3) + iαz4 − (µ/Re)z2

Y ] exp (iθ) = 0,

L3(exp (iθ)z3) ≡ [ρ((−iω + iαU)z3) + z4
Y ] exp (iθ) = 0,

L4(exp(iθ)z4) ≡ [(−iω + iαU)%+ ρY z
3 + ρ(iαz1 + z3

Y )] exp (iθ) = 0, (4)

L5(exp (iθ)z5) ≡ [z6 − z5
Y ] exp (iθ) = 0,

L6(exp (iθ)z6) ≡ [ρ((−iω + iαU)z5 + TY z
3) + (γ − 1)(iαz1 + z3

Y )− µγ/(σRe)z6
Y ] exp (iθ) = 0,

% = ρ(z4/P − z5/T ).

Equations (4) are the linearized Dan–Lin system [9] for two-dimensional disturbances. Here γ = CP /CV is the
ratio of specific heats, σ = CPµ/K is the Prandtl number, and K is the thermal conductivity. The Mach and
Prandtl numbers are based on the flow parameters outside the boundary layer, and the nonlinear terms in Eq. (3)
are written in the following form:

F 1 = 0, F 2 = ρ(u′u′X + v′u′Y ) + %(u′t + Uu′X + UY v
′), F 3 = ρ(u′v′X + v′v′Y ) + %(v′t + Uv′X),

F 4 = %(u′X + v′Y ) + u′%X + v′%Y , F 5 = 0,

F 6 = %(Θt + UΘX + TY v
′) + ρ(u′ΘX + v′ΘY ) + 2γ(γ − 1)M 2p′(u′X + v′Y ).

The nonlinear effects are determined by summands with a quadratic amplitude in nonlinear terms.
The boundary conditions for disturbances are

z1 = z3 = z5 = 0, Y = 0, Y =∞. (5)

Systems (3) and (4) are solved by the method of orthogonalization [9].
In the first order in terms of ε, the homogeneous system (4) is the basis for finding the eigenvalues of α for

given values of the frequency ω and Reynolds number Re and also for constructing amplitude functions of linear
waves of the form (2) with an undetermined amplitude parameter A with normalization |z3|max = 1. In the weakly
nonlinear theory, these parameters of linear waves are considered to be unknown (sought), and the nonlinearity
affects the amplitude A only.

In the second order in terms of ε, the system of inhomogeneous differential equations (3) is used to construct
secondary harmonics. We study the characteristics of secondary waves.

Self-action of initial waves of the form (2) leads to the appearance of summands of the form
AjA−juju−j exp (iθj − iθj) and AjAjujuj exp (iθj + iθj) (j = 1, 2) in nonlinear terms F k(u′j , u

′
j). The first of

them take into account induction of zero secondary harmonics with zero phases θj,−j = 0. We denote their ampli-
tude functions as zkj,−j . Being definitely steady, zero secondary harmonics contribute to distortion of the mean flow
characteristics U and T . The force field created by the second summands in F k generates overtones with doubled
phases θj,j = 2θj . We denote the amplitude functions of overtones as zkj,j .

Combinatorial interaction of u′1 and u′2 leads to the appearance of both the secondary summary wave with
the amplitude function zk1,2 and total phase θ1,2 = θ1 + θ2 and the secondary difference wave with the amplitude
function zk1,−2 and phase θ1,−2 = θ1 − θ2. Thus, we have to consider six secondary harmonics for two waves.

The general solution for secondary waves is found using the generic scheme zk = Czkh + zkinh, where zkh are
the solutions of the homogeneous system (4) and zkinh are the particular solutions of the inhomogeneous system (3).
We can naturally assume that the eigenfunctions of secondary waves also satisfy the boundary conditions (5). The
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Fig. 1. Growth rates of linear waves: curves 1 and 2 refer to the
frequencies f1 and f2, respectively.

system of amplitude equations for this type of nonlinear relations can be obtained using the standard averaging
procedure and solvability conditions [7, 8]:

dA1

dξ
= {−αi1 + [E1,1,−1|A1|2 + E1,2,−2|A2|2]Z1

−1}A1,

(6)
dA2

dξ
= {−αi2 + [E2,2,−2|A2|2 + E2,1,−1|A1|2]Z2

−1}A2.

Here Zj =
∫
Y

{ k∑
(zkj )+

∂Lk(zkj )
∂αj

}
dY ; the superscript plus indicates the solutions of the system conjugate to (4).

The coefficients E characterize the nonlinear relation of primary waves and secondary harmonics:

E1,1,−1 =
∫
Y

{ k∑
(zk1 )+

F k(zk1 , z
k
1,−1) + F k(zk−1, z

k
1,1)

∂Lk(zk1 )/∂ω1

}
dY,

E1,2,−2 =
∫
Y

{ k∑
(zk1 )+

F k(zk1 , z
k
2,−2) + F k(zk−2, z

k
1,2) + F k(zk2 , z

k
1,−2)

∂Lk(zk1 )/∂ω1

}
dY.

The term E1,1,−1 takes into account the self-action of the wave: effect of distortion of the mean field zk1,−1

and overtone zk1,1 on the amplitude of the first wave. The second term E1,2,−2 takes into account the additional
effect of distortion of the mean field generated by the second wave and also the influence of the secondary summary
and difference waves on the amplitude A1 of the first wave. The amplitude equation for the second wave has the
same structure.

We write the complex amplitudes Aj in a trigonometric form

Aj = aj exp (iψj) (a = |A|, ψ = argA)

and solve Eqs. (6) with respect to a and ψ. The initial values of aj(ξ0) for Eqs. (6) were set via the initial wave
intensities Ij . In this case, we have ξ0 = X0, where X0 is determined by the initial value of Re0 (see below).
The relation between the disturbance amplitude and intensity is expressed in terms of the maximum (along the
transverse coordinate Y ) calculated value of mass-velocity fluctuations m′ = ρu+ %U of the subharmonic (j = 1)

Ij(ξ0) = aj(ξ0)m′1max exp (−αijξ0)

and the initial phases can be chosen arbitrarily [ψj(ξ0) = 0].
Results and Discussion. In the experiments [1], the position of the source of controlled disturbances

corresponded to the value Re = 497; the measurements were performed within the range Re0 6 Re 6 846,
Re0 = 624. The stagnation temperature in the experiments was constant and reached 310 K; γ = 1.4 and σ = 0.72.
The calculations were performed for the same parameters.

Figure 1 shows the growth rates −αi of linear waves with the subharmonic frequency f1 and fundamental
frequency f2 (curves 1 and 2, respectively). The initial position of the subharmonic for Re = Re0 is the region
near the lower branch of the neutral curve; the linear growth rate increases with increasing Re and does not reach
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Fig. 2 Fig. 3

Fig. 2. Amplitude functions of zero secondary harmonics for Re = Re0: curves 1 and 2 refer to
u1,−1 and u2,−2; the dashed curve is the mean undisturbed profile of the streamwise velocity U .

Fig. 3. Nonlinear coefficient versus Re for waves with the frequencies f1 (curve 1) and f2 (2): the
solid and dashed curves refer to the regimes of self-action and combinatorial interaction, respectively.

a maximum in the last measurement section. For Re = Re0, the main wave is located near the maximum of the
linear growth rate, which decreases downstream.

Among the secondary harmonics, of greatest interest are the zero harmonics (u1,−1 and u2,−2), which deter-
mine the deformation of diagrams of the averaged streamwise velocity found experimentally. Figure 2 shows their
transverse distributions (curves 1 and 2) for Re = Re0 and also the mean undisturbed profile U (dashed curve). The
total deformation of U is written in the form ∆U = |a1|2u1,−1 + |a2|2u2,−2 and is determined by the amplitudes of
initial waves. Thus, the allowance for nonlinearity is responsible for the greater filling of the profile in the near-wall
region and the appearance of a velocity defect near the external boundary, which increases the boundary-layer
thickness. This result is in good agreement with experimental data.

The influence of nonlinear processes on the amplitude of primary waves can be analyzed by considering
nonlinear coefficients. We unite the coefficients that take into account self-action and combinatorial interaction [see
Eq. (7)]. It follows from Eqs. (6) that the amplitudes aj are determined by the real values of these coefficients (Fig. 3).
The positive values of nonlinear terms lead to an additional [as compared to the linear value a(ξ0) exp (−αiX)]
increase in amplitudes, whereas the negative values lead to an amplitude decrease. It follows from Fig. 3 that the
self-action of the subharmonic (solid curve 1) increases the amplitude a1, and the self-action of the wave with the
frequency f2 (dashed curve 1) decreases the amplitude. The effect of the main wave on the subharmonic E1,2,−2 is
manifested in destabilization of the subharmonic amplitude for low values of Re; this influence decreases significantly
in the middle of the range examined (solid curve 2). For the wave with the fundamental frequency f2, the presence
of a subharmonic in the spectrum always leads to an increase in a2 (dashed curve 2).

Thus, the influence of nonlinearity in the process considered is ambiguous; it can become stronger or weaker
and, as a whole, depends on the values of the amplitudes under consideration.

We analyze the behavior of the amplitudes within the framework of the model considered (Fig. 4). The
initial values of a1 and a2 in calculations corresponded to experimental summary intensities of the initial wave
packets; for ξ = ξ0, we had I1/I2 = 3 and a1/a2 = 2.

Nonlinearity always leads to a more intense increase in the subharmonic amplitude. The ratio of final and
initial amplitudes is approximately equal to 3 in the linear model and to 6 in the nonlinear approximation. Thus,
the amplitude can increase almost twofold due to nonlinearity. The main contribution to the increase in amplitude
is made by self-action; the presence of the wave with the fundamental frequency leads to a decrease in amplitude
because part of energy is transferred to this wave.

For the main wave, the linear amplitude a2 decreases because of a significant decrease in linear growth rates
within the range of Re under study; the allowance for nonlinearity in the regime of self-action has practically no
effect on the amplitude, and the presence of the subharmonic leads to an insignificant increase in amplitude. The
weak effect of nonlinearity is determined by the small value of the initial amplitude of the wave.

The process of disturbance propagation in the boundary layer depends on the values of initial amplitudes
and their ratio a1/a2.
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Fig. 4 Fig. 5

Fig. 4. Dynamics of the absolute values of the wave amplitudes a1 and a2: the solid curves refer to
the model of combinatorial interaction, the dot-and-dashed curves show the regime of self-action,
and the dashed curves refer to the linear model.

Fig. 5. Phase incursion of the complex amplitudes A = a exp (iψ) in the nonlinear process for waves
with the frequencies f1 (curve 1) and f2 (2).

The dynamics of the absolute values of the amplitude was considered below. The nonlinear process includes
also the phase incursion ψj , which can change the wavenumbers αrj and, hence, the phase velocities cj = ωj/α

r
j .

It was noted in [1] that the values of phase velocities c = 0.70–0.72, on the average, were 30–40% higher than the
phase velocities of own waves in a supersonic boundary layer c = 0.52–0.55. Figure 5 shows the phase incursion
obtained in calculations. The dependence ψj(Re) demonstrates the effectiveness of wave interaction. It follows from
Fig. 5 that the role of nonlinearity increases in the middle of the examined range of Reynolds numbers. In this
range, the values of ∆αrj = dψj/dRe were found, and the phase velocities of the waves at the nonlinear stage were
determined. The phase velocities with nonlinear corrections (c = 0.69–0.75) are close to experimental values.

Thus, the combinatorial model considered yields a qualitatively correct description of the special features
of the dynamics of high-intensity controlled disturbances: significant amplification of the signal as compared to
the linear case, distortion of mean-velocity profiles near the external boundary, which leads to an increase in the
boundary-layer thickness, and increase in phase velocities of the waves.

The results presented indicate that the nonlinear process considered may occur in the boundary layer excited
by a controlled high-intensity signal. The interaction of real wave packets rather than solitary waves should be
further examined, and steady vortex modes, which may affect the nonlinear process, should be analyzed.
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